Site-selective localization of analytes on gold nanorod surface for investigating field enhancement distribution in surface-enhanced Raman scattering.
نویسندگان
چکیده
Understanding detailed electric near-field distributions around noble metal nanostructures is crucial to the rational design of metallic substrates for maximizing surface-enhanced Raman scattering (SERS) efficiency. We obtain SERS signals from specific regions such as the ends, the sides and the entire surfaces of gold nanorod by chemisorbing analytes on the respective areas. Different SERS intensities from designated surfaces reflect their electric near-field intensities and thus the distributions. Our experimental results show that approximately 65% of the SERS enhancement emanated from the ends of gold nanorods which occupies only 28% of the total surface area, quantitatively exhibiting the strongly localized electric field around the ends. The reliability and generality of the investigation is confirmed by employing analytes with different chemical characteristics: positively and negatively charged, neutral, hydrophobic and hydrophilic ligands, which are selectively adsorbed on the different sites. Numerical simulations of the electric near-field distributions around the nanorod are in well agreement with our experimental results. In addition, we observed that the SERS intensities of colloidal gold nanospheres are independent of surface areas being functionalized by analytes, indicating a homogenous electric near-field distribution around gold nanospheres.
منابع مشابه
Surface Enhanced Raman Scattering of Crystal Violet with Low Concentrations Using Self-Assembled Silver and Gold-Silver Core-Shell Nanoparticles
The active substrates in surface enhanced Raman scattering (SERS) spectroscopy were prepared through self-assembly of nanoparticles on functionalized glasses. Colloidal silver nanoparticles (Ag NPs) were prepared chemically in two different sizes by reduction of AgNO3 using trisodium citrate and sodium borohydride. Gold–silver core–shell nanoparticles were also prepared to compare between the o...
متن کاملOff-resonance surface-enhanced Raman spectroscopy from gold nanorod suspensions as a function of aspect ratio: not what we thought.
Design of nanoparticles for surface-enhanced Raman scattering (SERS) within suspensions is more involved than simply maximizing the local field enhancement. The enhancement at the nanoparticle surface and the extinction of both the incident and scattered light during propagation act in concert to determine the observed signal intensity. Here we explore these critical aspects of signal generatio...
متن کاملBiosensing Based on Surface-Enhanced Raman Spectroscopy by Using Metal Nanoparticles
Surface-enhanced Raman spectroscopy (SERS) is a promising tool in the analytical science because it provides good selectivity and sensitivity without the labeling process required by fluorescence detection. This technique consists of locating the target analyte on nanometer range of roughed Au-nanoparticles. The presence of the metal nanoparticles provides a tremendous enhancement to the result...
متن کاملUltrasensitive and selective homogeneous sandwich immunoassay detection by Surface Enhanced Raman Scattering (SERS).
In this report, a simple and highly selective homogeneous sandwich immunoassay was developed for ultrasensitive detection of Staphylococcal Enterotoxin B (SEB) using Surface Enhanced Raman Scattering (SERS). The assay uses polyclonal-antibody functionalized magnetic gold nanorod particles as capture probes for SEB, which can be collected via a simple magnet. After separating SEB from the sample...
متن کاملTunable Lattice Coupling of Multipole Plasmon Modes and Near-Field Enhancement in Closely Spaced Gold Nanorod Arrays.
Considering the nanogap and lattice effects, there is an attractive structure in plasmonics: closely spaced metallic nanoarrays. In this work, we demonstrate experimentally and theoretically the lattice coupling of multipole plasmon modes for closely spaced gold nanorod arrays, offering a new insight into the higher order cavity modes coupled with each other in the lattice. The resonances can b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 3 4 شماره
صفحات -
تاریخ انتشار 2011